Abstract
Background
Epigenetic modifications of a gene have been shown to play a role in maintaining a long‐lasting change in gene expression. We hypothesize that alcohol’s modulating effect on DNA methylation on certain genes in blood is evident in binge and heavy alcohol drinkers and is associated with alcohol motivation.
Methods
Methylation‐specific polymerase chain reaction (PCR) assays were used to measure changes in gene methylation of period 2 (PER2) and proopiomelanocortin (POMC) genes in peripheral blood samples collected from non-smoking moderate, non-binging, binge, and heavy social drinkers who participated in a 3‐day behavioral alcohol motivation experiment of imagery exposure to either stress, neutral, or alcohol‐related cues, 1 per day, presented on consecutive days in counterbalanced order. Following imagery exposure on each day, subjects were exposed to discrete alcoholic beer cues followed by an alcohol taste test (ATT) to assess behavioral motivation. Quantitative real‐time PCR was used to measure gene expression of PER2 and POMC gene levels in blood samples across samples.
Results
In the sample of moderate, binge, and heavy drinkers, we found increased methylation of the PER2 and POMC DNA, reduced expression of these genes in the blood samples of the binge and heavy drinkers relative to the moderate, non-binge drinkers. Increased PER2 and POMC DNA methylation was also significantly predictive of both increased levels of subjective alcohol craving immediately following imagery (p < 0.0001), and with presentation of the alcohol (2 beers) (p < 0.0001) prior to the ATT, as well as with alcohol amount consumed during the ATT (p < 0.003).
Conclusions
These data establish significant association between binge or heavy levels of alcohol drinking and elevated levels of methylation and reduced levels of expression of POMC and PER2 genes. Furthermore, elevated methylation of POMC and PER2 genes is associated with greater subjective and behavioral motivation for alcohol.
Source: https://doi.org/10.1111/acer.13932 31st December 2018